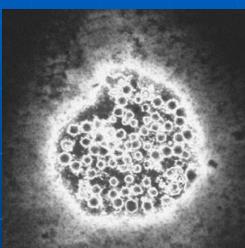
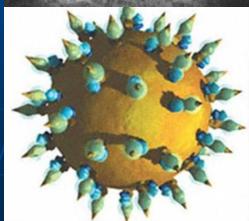
A Primer on Viral Hepatitis

Dr. Khalid Mumtaz

Associate Professor MBBS; MSc


The Ohio State University, Wexner Medical Center, Columbus Ohio


Objectives

- Describe various types of viral hepatitis, their routes of transmission and presentations.
- Interpretation of the various serological tests for acute and chronic viral hepatitis
- Current management in light of the AASLD and IDSA guidelines.

Introduction

- Classic acute viral hepatitis is caused by one of the five etiologic agents:
 - Hepatitis A Virus
 - Hepatitis B Virus
 - Hepatitis C Virus
 - Hepatitis D Virus
 - Hepatitis E Virus
 - Rare viral infection—CMV, HSV

Case history

- 45 yrs old prisoner admitted with nausea, vomiting and fever for 3 days. No h/o IVDU, no tattoos. On exam, he has jaundice and tenderness in RUQ. Conscious and oriented.
- Labs: CBC: Normal, Bili: $10 \rightarrow 19$ mg/dl, ALT: $3434 \rightarrow 3510$ IU, AST: $2326 \rightarrow 1428$ IU, AP: 156, INR: $2.5 \rightarrow 3.6$.
- What is the diagnosis
- What serological tests will you order?
 - HAV- IgM and IgG
 - HEV-IgM and IgG
 - HBsAg, HbCore IgM &IgG, HBeAg, HBeAb, HDV Ab IgM and IgG
 - HCV AB and HCV RNA PCR

Hepatitis A and E - Important Features

Transmission:

Oro-fecal route

Incubation period:

Average 40 days Range 15-60 days

Jaundice by age group:

<10%

40 - 50%

70 - 80%

Illness severity:

Increased with age

Case-fatality rate:

Overall- 1%-3%

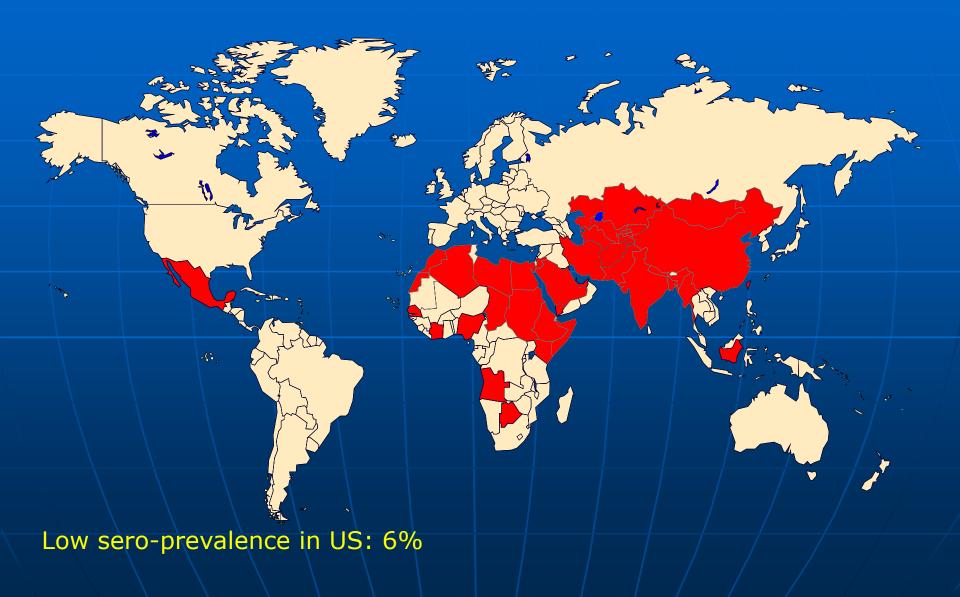
Pregnant women-15%-25% (HEV).

Rare Complications:

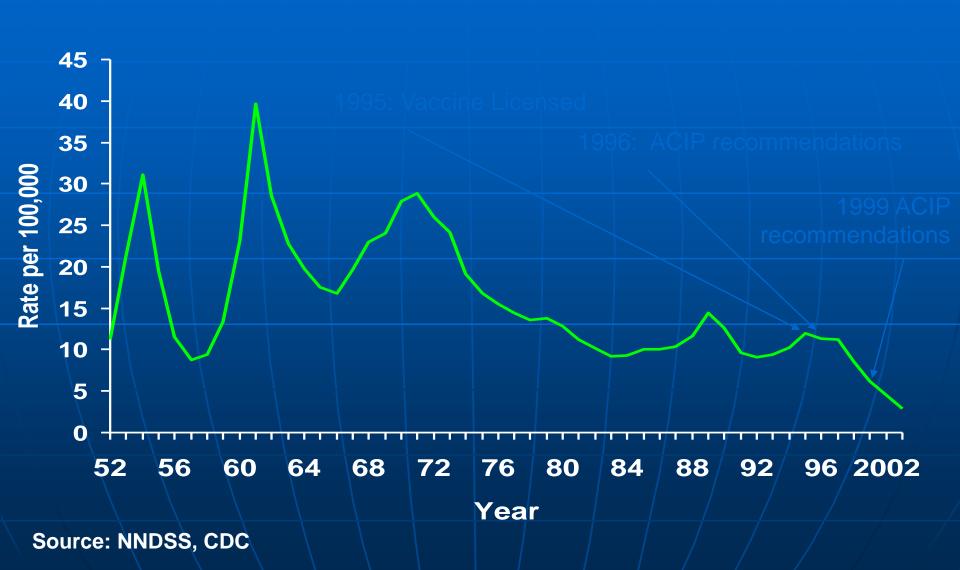
Fulminant hepatitis

Cholestatic hepatitis (more with HEV)

Relapsing hepatitis

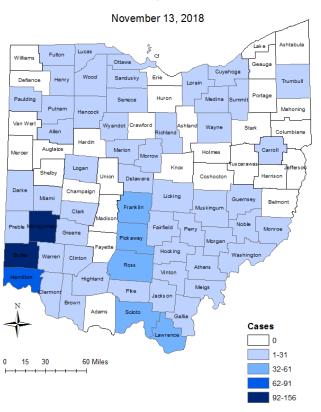

Chronic sequelae:

None identified


Geographic Distribution of HAV Infection

Geographic Distribution of Hepatitis E

Reported Cases of Hepatitis A and E, United States



Who are at risk of HAV & HEV?

- Children who go to day-care centers.
- Troops living under crowded conditions at military camps or in the field.
- Anyone living in heavily populated and unsanitary conditions.
- U.S. cases usually have h/o travel to HAV or HEV-endemic areas.
- Ohio residents!

Recent Outbreak of HAV in Ohio

Hepatitis A Outbreak Cases by County, Ohio, 2018

Hepatitis A Outbreak Summary (11/13/18):

■Number of cases: 865

■Illness onset range: 01/05/2018 - 11/07/2018

■Age range: 3-81 years

•Gender: 60% male

■No. of hospitalizations: 551 (64%)

■No. of counties with cases: 58 (66%)

No. of deaths: 1

Data analyzed 11/13/2018, Outbreak Response and Bioterrorism Investigation Team, Bureau of Infectious Diseases, Ohio Department of Health, 2018.

Severity of acute viral Hepatitis

King's College Criteria

- Non-acetaminophen:
- INR > 6.5 OR
- Any 3 of the following 5:
 - Age < 10 or > 40
 - Serum bilirubin > 18
 - Jaundice to encephalopathy interval > 7 days
 - -INR > 3.5
 - Unfavorable Etiology
 - Non-A, non-B hepatitis, halothane, idiosyncratic drug reaction, Wilson's

- 45 yrs
- Bili: $10 \rightarrow 19$ mg/dl,
- INR: $2.5 \rightarrow 3.6$
- Etiology:
 - HAV- IgM and IgG
 - HEV-IgM and IgG
- No HE

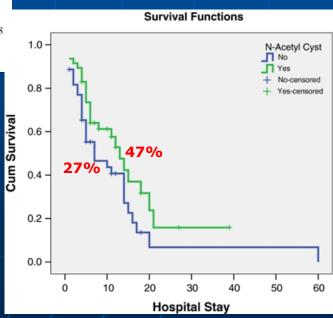
For identifying patients with poor prognosis who needs LT

Sensitivity: 72 % Specificity: 98 %

PPV: 89 %

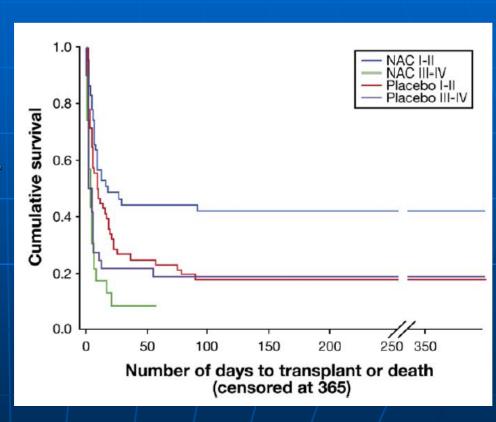
Management HAV & HEV

- No specific Rx
- Hospitalization depends on severity of symptoms and LFTs
- Treatment is aimed toward identifying small group who may develop ALF
 - Role of N-acetylcysteine (NAC) in severe Acute HAV and HEV


ORIGINAL ARTICLE

Role of N-acetylcysteine in adults with non-acetaminopheninduced acute liver failure in a center without the facility of liver transplantation

Khalid Mumtaz · Zahid Azam · Saeed Hamid · Shahab Abid · Sadik Memon · Hasnain Ali Shah · Wasim Jafri


Table 1 Baseline characteristics of study subjects in the two treatment groups			
Characteristics	<i>N</i> -Acetylcysteine group (group 1, $n = 47$)	Control group (group 2, $n = 44$)	P
Male gender	26 (55.3%)	24 (54.5%)	0.941
Age (years)	27.74 + 11.79	37.52 ± 18.82	0.004
Prothrombin time (s)	59.55 + 36.07	53.05 + 30.57	0.357
Bilirubin (mg/dl)	20.63 ± 11.03	14.36 ± 8.90	0.004
Serum albumin (mg/dl)	2.73 ± 0.55	2.70 ± 0.75	0.820
Alanine aminotransferase (mg/dl)	1926 ± 1374.2	1457.2 ± 1467.8	0.342
Interval between jaundice and hepatitis E (days)	8.87 ± 9.47	13 ± 18.24	0.175
Creatinine at admission (mg/dl)	1.39 ± 0.82	1.57 ± 0.90	0.312
Presence of ascites	10 (21.3%)	16 (36.4%)	0.111
Pregnancy with acute hepatitis E	8 (17%)	1 (2.3%)	0.031^{a}
Hepatic encephalopathy			
Grade I	6 (12.8%)	6 (13.6%)	'
Grade II	9 (19.1%)	18 (40.9%)	0.128
Grade III	15 (31.9%)	9 (20.5%)	
Grade IV	17 (36.2%)	11 (25.0%)	

Factors	Adjusted odds ratio	95% confidence interval for adjusted odds ratio	Wald P
Age (years)	_		
≤40 ^a			
>40	10.3	2.0-52.3	0.005
N-Acetylcysteine			
Given ^a			
Not given	10.3	1.6–65.7	0.014
Type of FHF			
Hyperacute liver failure ^a			
Acute liver failure	5.03	3.1-130.3	0.018
Prothrombin time group (s)			
≤50 ^a			
>50	15.6	3.6-67.9	< 0.001
Requirement of ventilator			
Not ventilated ^a			
Ventilated	20.1	3.1–130.2	0.002

N-acetylcysteine improves transplant-free survival in non-acetaminophen ALF ALFSG group. Gastroenterology 2009

- 173 patients enrolled;
 - NAC (n:81) or placebo (n:92).
- Overall survival at 3 weeks:
 - NAC group: 70%
 - Placebo: 66%; (p-value:0.28).
- Transplant free survival:
 - NAC patients: 40%
 - Placebo: 27%; p-value:0.04.

Vaccination for HAV and HEV

Vaccination for HAV

- HAV vaccine: Havrix ,Vaqta
 - Formalin inactivated virus
 - Greater than 2 years of age
 - 2 doses, 6-12 months apart

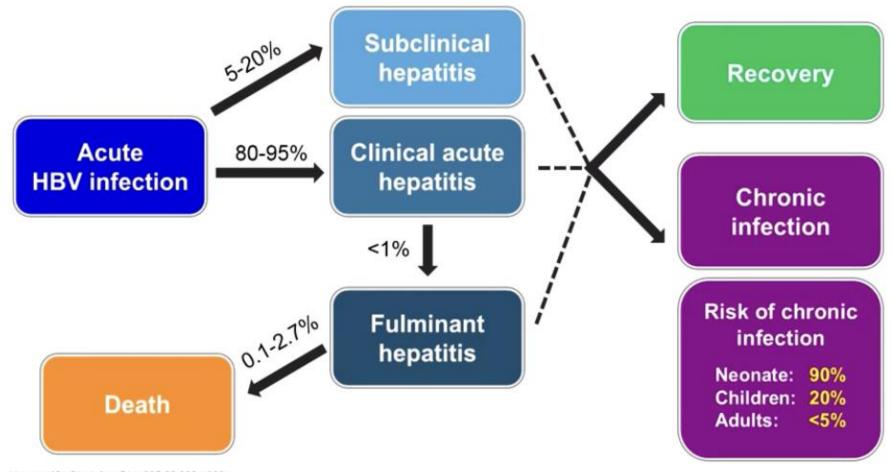
Candidates for vaccine

- Children living in endemic area
- Increased risk of HAV
 - People more than 30 year of age with CLD
 - Staff of day care centers
 - Staff of NICU
 - All residing in OHIO

Vaccine for HEV

- HEV 239 vaccine, Hecolin® is a promising vaccine
- Recommended for use in 16-65 year-old healthy subjects in China.
- Not FDA approved

Case of Acute hepatitis B/C


- 32 yrs old male with h/o IVDU and multiple tattoos.
 Admitted with unwell feeling and jaundice. Exam confirms jaundice and RUQ tenderness.
- Labs: CBC: N; Bili: 7 mg/dl, ALT: 726, AST:660 IU, AP> 100. INR: 1.5.
- US shows altered echotexture of liver.
- HCV AB: negative; HCV PCR: 325,000copies/ml
- HBsAg: Negative, HBcIgM: Negative; HBsAB: negative;
 Hbcore IgG: positive
- HAV IgM and IgG: negative: HEV: negative
- What is the diagnosis?
- What are the risk of progression to chronic phase?
- How will you manage it?

Hepatitis B and C

- Both are blood borne viral infections.
- Sources of transmission in US are:
 - IVDU
 - Sexual transmission—HBV 15-20%
 - Tattoos
 - Vertical transmission—HBV 20-25%
- Sources of transmission in developing world:
 - Unscreened Blood and product tx
 - Therapeutic injection
 - Contaminated surgical instruments

Outcomes of Acute HBV Infection Vary by Age of Exposure

When to treat Acute Hepatitis B

- AVT is usually not indicated as >90% spontaneously resolve infection.
- Patients with severe acute liver injury or ALF due to HBV may benefit from entecavir or tenofovir.
- Duration of treatment is not certain.
 However, 3-6 months post HBSAg seroconversion is generally advised

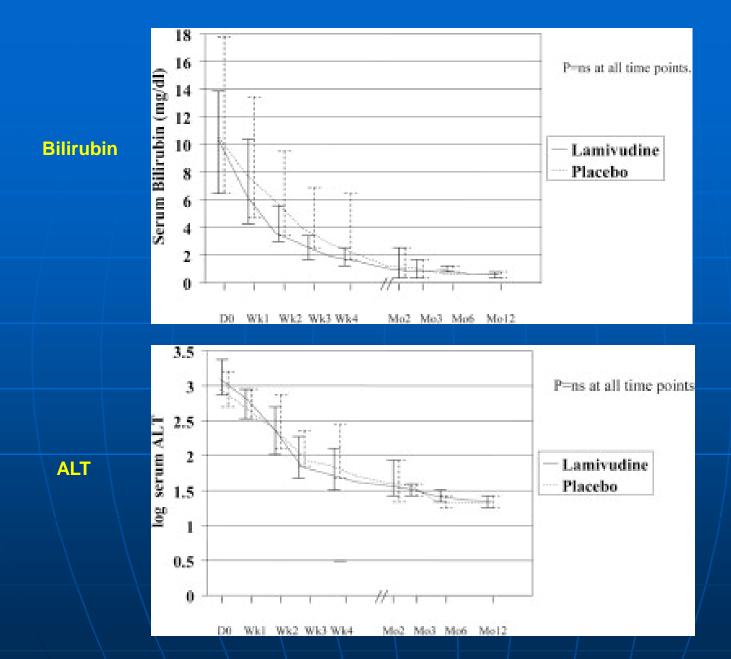
A randomized controlled trial of lamivudine to treat acute hepatitis B. Kumar M et al. Hepatology 2007

- Most cases resolve spontaneously without therapy
- Can lead to severe hepatitis and ALF in 0.5-2% of patients
- Do patients with acute HBV require antiviral therapy?

Lamivudine for acute HBV

Entry criteria

- ALT>2.5xULN
- Bil >2.5x ULN
- HBcIgM+


Exclusions

- Co-infections
- Alcohol>20g/d
- Hepatotoxic drugs
- Chronic HBV

- RCT 1:1 LAM vs placebo
- Lamivudine was given for 3 m
- Severe HBV:
 - Encephalopathy
 - Bil≥10mg/dL
 - INR ≥ 1.6
- FU 12 m

Baseline characteristics

LAM	PLB
31	40
37	36
71%	62.5%
10.9	12.3
1658	1253
2.0	1.89
83.9%	85%
5.53	5.24
6.5%	2.5%
0	0
	31 37 71% 10.9 1658 2.0 83.9% 5.53 6.5%

Clinical outcomes

	LAM	PLB
Total no of patients	31	40
■ HBsAg-ve>12m	93.5%	92.5%
Decompensation	0	0
Deaths	0	0

Conclusions

- Lamivudine did not confer any clinical benefits in patients with acute HBV
- Lamivudine also did not decrease the prevalence of chronic hepatitis B

The Study of Efficacy of Lamivudine in Patients with Severe Acute HBV

Jian-Wu Yu, et al . DDS 2010

Entry criteria

- INR>1.4
- Bil >13 mg/dl
- HBsAg+
- ALT flare>5x ULN
- HBcIgM+
- HBV DNA≥10⁴ cpm

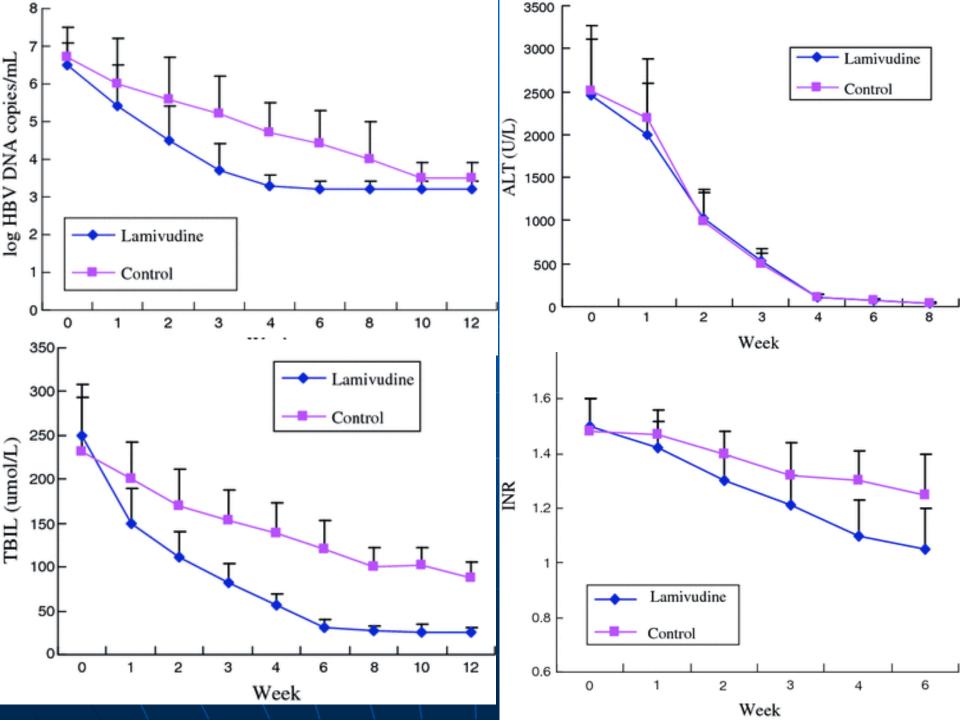
Exclusions

- HBcIgG+
- Co-infections
- Alcohol>20g/d
- Hepatotoxic drugs
- Abnormal US

- RCT 1:1 LAM vs standard medical therapy
- Randomization was by order of admission
- Lamivudine given until HBsAg clearance
- FU 12 m

Baseline characteristics

	LAM	med care
Total patients	40	40
Males	30	29
Age	45.8	44.5
Bilirubin	14.7	13.7
ALT	2456	2507
■ INR	1.5	1.48
HBV DNA (logs)	6.5	6.7
HBeAg+	33	32


Results

		LAM	med care	p value
-	Total patients	40	40	
	Subac Liver Failure	* 8 (20%)	17 (42.5%)	0.03
	Mortality @ 3m	3 (7.5%)	10 (25%)	0.034
	HBsAg loss @ 3m	39	38	

Prognostic markers of mortality

- Age≥ 45
- Lamivudine therapy
- Total: direct bili ratio > 2
- Rapid decline HBV DNA
- INR

*severe jaundice, INR≥1.6 ± encephalopathy

Conclusions

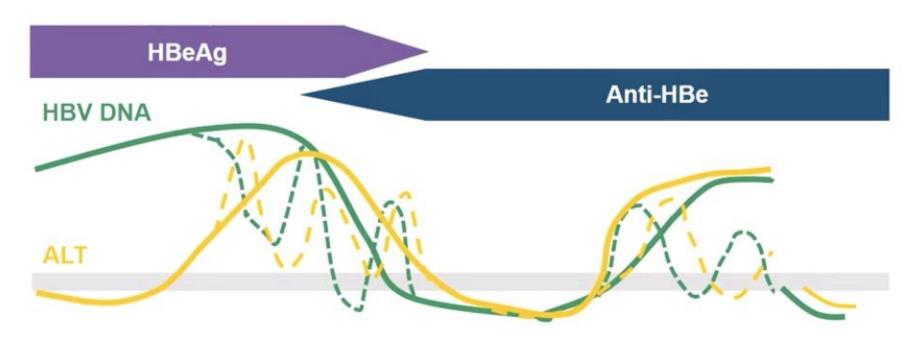
- Lamivudine reduces mortality and liver failure in patients with severe acute HBV
- Differences in enrolment criteria are the likely explanation for differences with Kumar study
- The criteria for starting antiviral therapy in acute HBV is unclear.

Chronic Hepatitis B

Chronic HBV is a Dynamic Disease

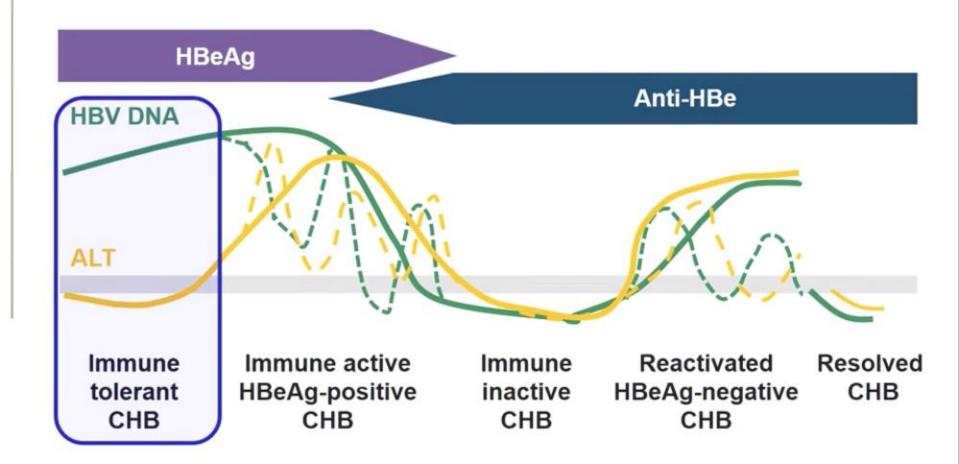
- Not curable
 - HBV can be suppressed but not eliminated
- Dynamic disease
 - Life-long monitoring required
 - Best serologic marker of immune control is loss of HBsAg → acquisition of anti-HBs

Chronic HBV is a Dynamic Disease


- Not curable
 - HBV can be suppressed but not eliminated
- Dynamic disease
 - Life-long monitoring required
 - Best serologic marker of immune control is loss of HBsAg → acquisition of anti-HBs

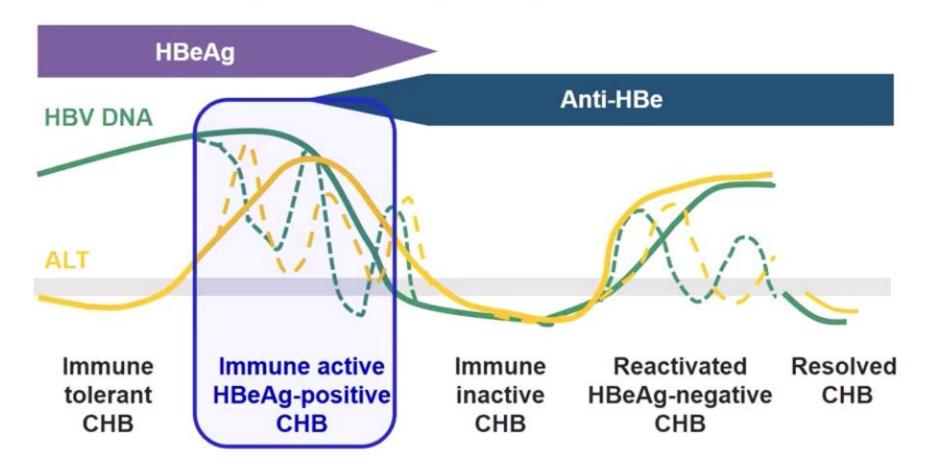
Phases of Chronic Hepatitis B (CHB)

Immune tolerant CHB Immune active HBeAg-positive CHB Immune inactive CHB

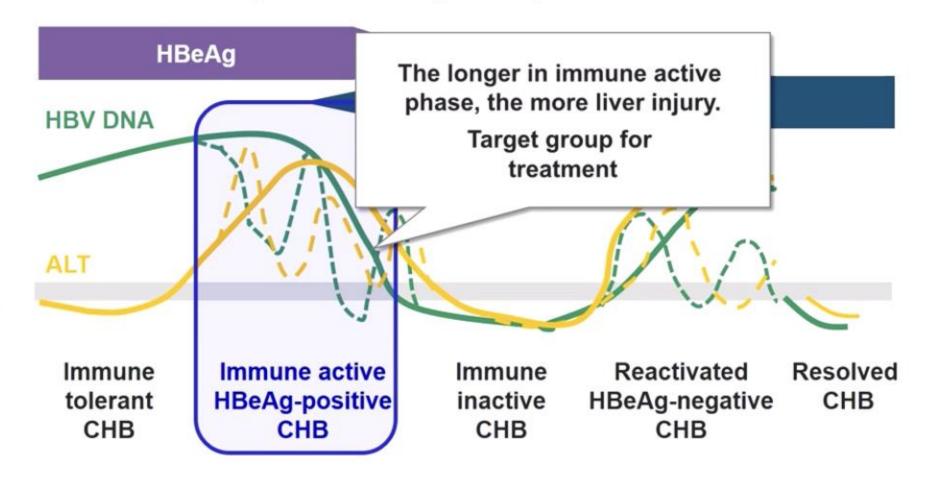

Reactivated HBeAg-negative CHB Resolved CHB

Loss of HBsAg

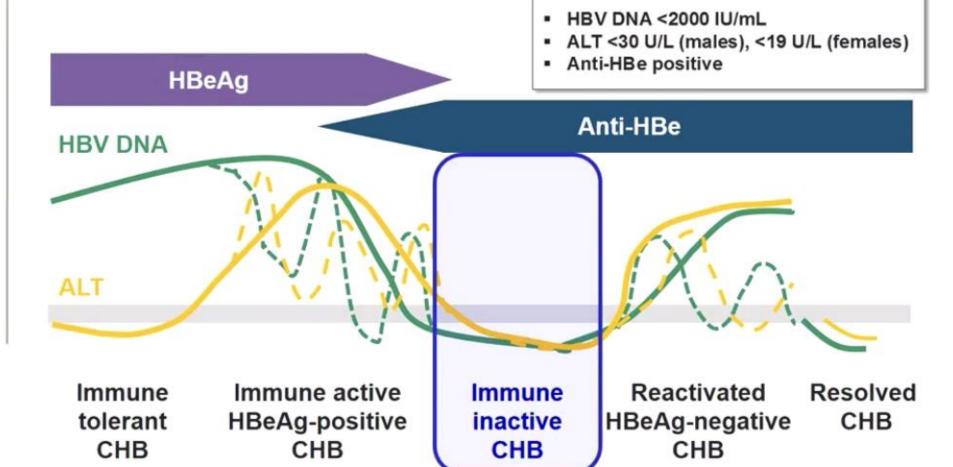
Immune Tolerant Chronic Hepatitis B (CHB)


Immune Tolerant Chronic Hepatitis B

- Defined by:
 - HBeAg positive
 - ALT levels normal (<30 IU/L males, <19 IU/L females)
 - HBV DNA levels high, usually ≥10⁷ IU/mL
- Typical of persons infected as infants/young children
- Median age of transition to immune active HBeAg-positive phase = 30 years
- Treatment NOT indicated

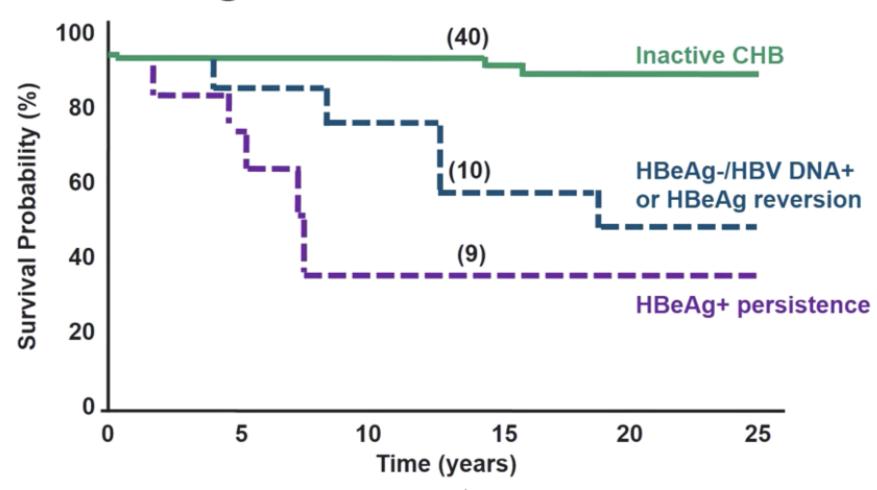

HBeAg-Positive "Active" Chronic Hepatitis B (CHB)

HBeAg-Positive "Active" Chronic Hepatitis B (CHB)

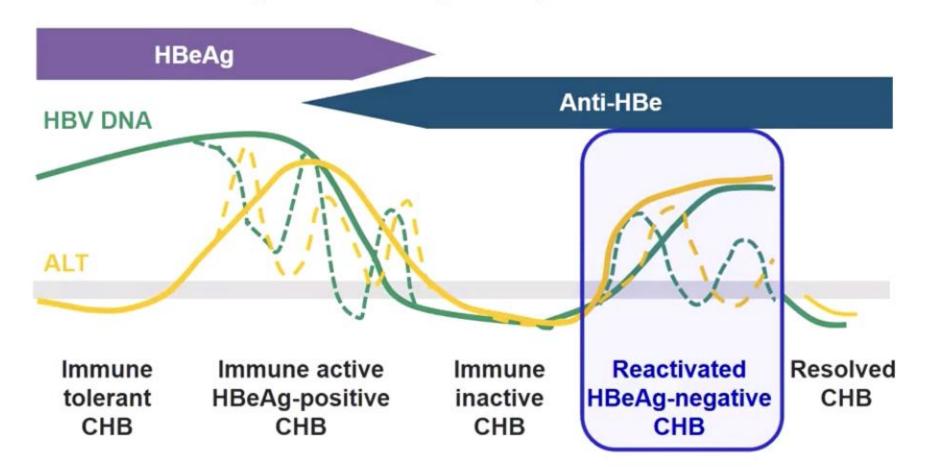


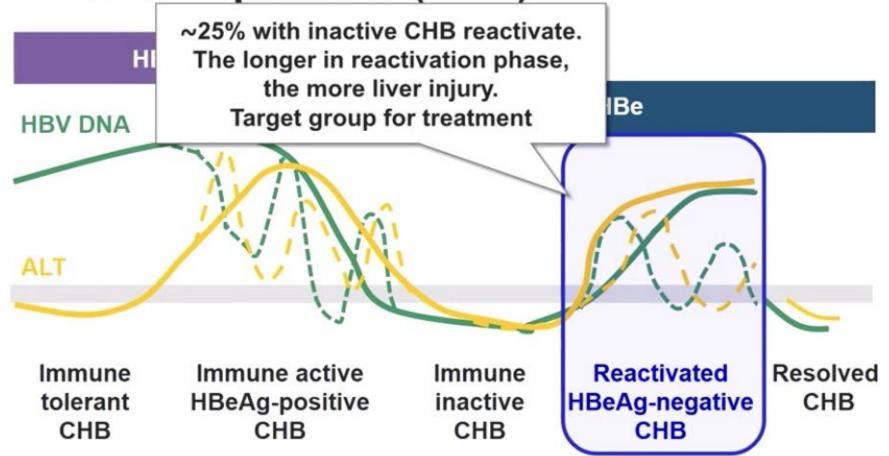
FUNDAMENTALS

"LIVER DISEASE

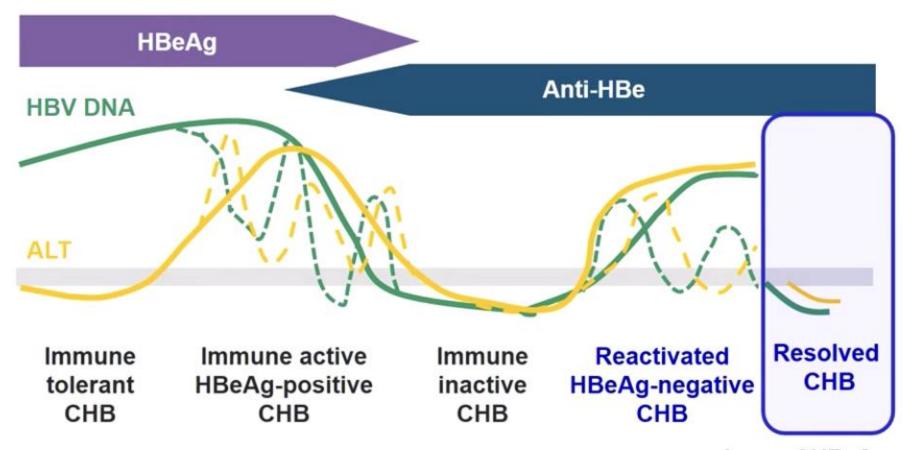


Immune Inactive Chronic Hepatitis B (CHB)


Natural History of Untreated CHB: Survival Highest if Inactive CHB


HBeAg Negative "Active" Chronic Hepatitis B (CHB)

FUNDAMENTALS ELIVER DISEASE


HBeAg Negative "Active" Chronic Hepatitis B (CHB)

HBsAg Seroclearance Resolved Chronic Hepatitis B (CHB)

Loss of HBsAg

Summary (2) Phases of Chronic HBV Infection

Phase	Management
Immune tolerant	Monitor ALT every 3-6 months
HBeAg positive immune active	Treat
Inactive chronic HBV	Monitor ALT every 6 months
HBeAg negative immune active (Reactivation)	Treat
Resolved HBV	Monitor ALT every 6 months

Identifying Treatment Candidates

Algorithm to Identify Treatment Candidates

Elevated ALT >2X ULN

<2X ULN ALT

Algorithm to Identify Treatment Candidates

Elevated ALT >2X ULN

<2X ULN ALT

HBeAg Positive HBV DNA >20,000 IU/mL

HBeAg Negative HBV DNA >2000 IU/mL

Treat

FUNDAMENTALS

LIVER DISEASE

Algorithm to Identify Treatment Candidates

Elevated ALT >2X ULN

HBeAg Positive HBV DNA >20,000 IU/mL

HBeAg Negative HBV DNA >2000 IU/mL

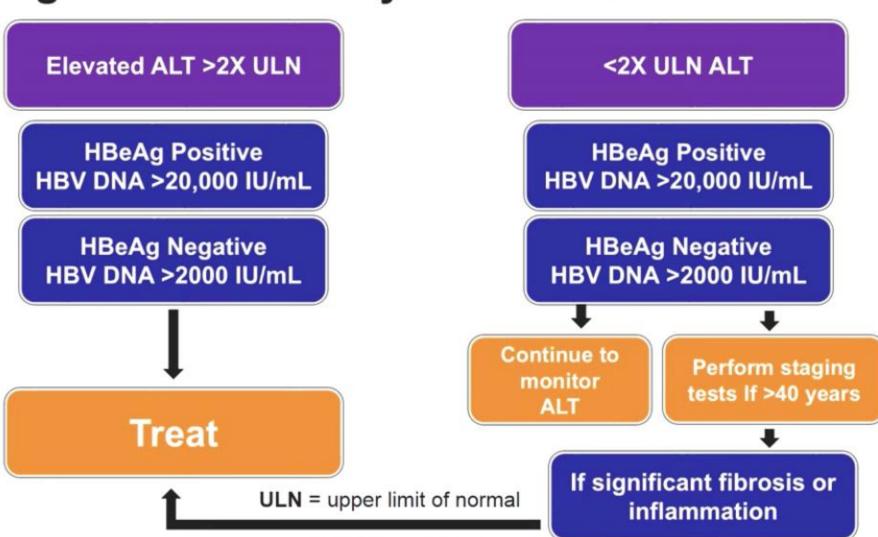
Treat

<2X ULN ALT

HBeAg Positive HBV DNA >20,000 IU/mL

HBeAg Negative HBV DNA >2000 IU/mL

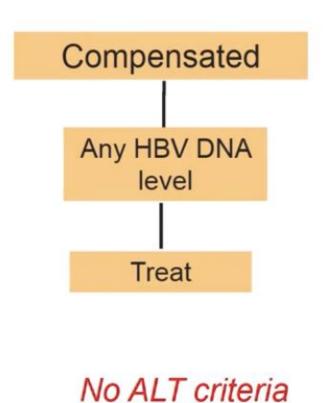
Algorithm to Identify Treatment Candidates

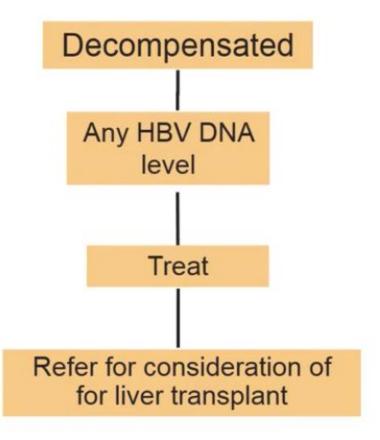

Elevated ALT >2X ULN HBeAg Positive HBV DNA >20,000 IU/mL **HBeAg Negative** HBV DNA >2000 IU/mL Treat

<2X ULN ALT **HBeAg Positive** HBV DNA >20,000 IU/mL **HBeAg Negative** HBV DNA >2000 IU/mL Continue to Perform staging monitor tests If >40 years ALT

FUNDAMENTALS ELIVER DISEASE

Algorithm to Identify Treatment Candidates


Importance of Identifying Patients with HBV Cirrhosis


- Warrant surveillance for complications of cirrhosis
 - Varices
 - Hepatocellular carcinoma
- Treatment guidelines differ
 - Urgency of treatment
 - Duration of therapy
 - Use of peg-interferon versus nucleoside analogues

Algorithm for Management of Patients with Cirrhosis

Goals of HBV Treatment

- Suppress HBV replication
- Decrease liver necrosis and inflammation
- Reverse liver fibrosis
- Prevent progression to cirrhosis, liver failure, and hepatocellular carcinoma (HCC)

Approved HBV Treatments

- Interferons (IFN)
 - Standard IFN alfa
 - Pegylated IFN alfa
- Nucleos/tide Analogues
 - Lamivudine (Epivir®, LMV)
 - Adefovir (Hepsera®, ADV)
 - Entecavir (Baraclude®, ETV)
 - Telbivudine (Tyzeka[®], TBV)
 - Tenofovir disoproxil fumarate (Viread®, TDF)
 - Tenofovir alafenamide (Vemlidy®, TAF)

FUNDAMENTALS

"LIVER DISEASE

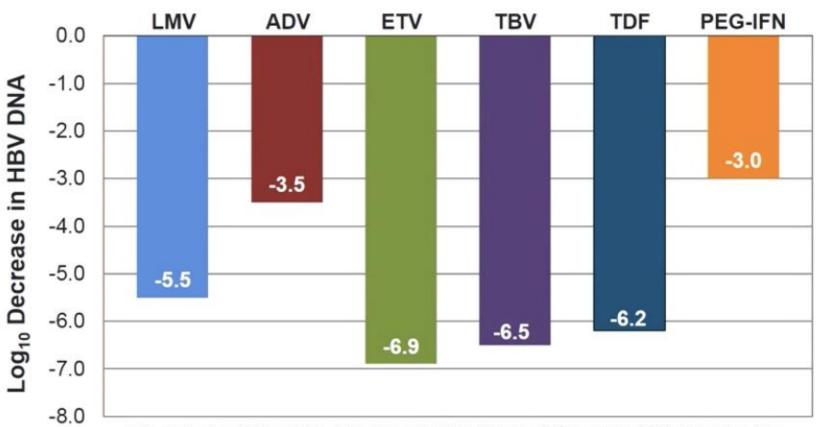
Responses to HBV Treatment

Virologic/Serologic Response

- Decrease in serum HBV DNA to undetectable levels
- HBeAg loss and seroconversion to anti-HBe, applicable to HBeAg+ patients only
- HBsAg loss: Ultimate goal

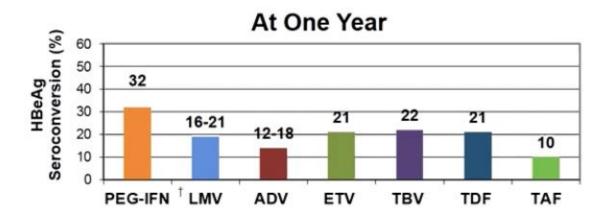
Biochemical Response

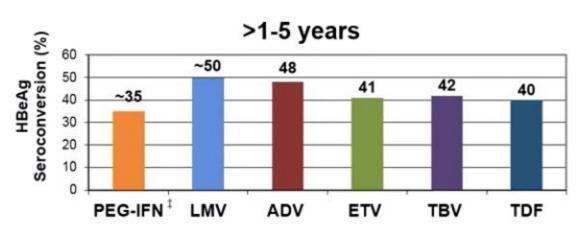
Decrease in ALT levels to normal


Histological Response

 Decrease in inflammation and fibrosis (seldom assessed in clinical practice)

Decrease in Serum HBV DNA After 1 Year of Treatment in HBeAg+ or HBeAg- Patients with Chronic Hepatitis B




LMV, lamivudine; ADV, adefovir; ETV, entecavir; TBV, telbivudine; TDF, tenofovir; PEG-IFN, peginterferon.

FUNDAMENTALS ELIVER DISEASE

HBeAg Seroconversion After 1 to 5 Years of Treatment

PEG-IFN, peginterferon

LMV, lamivudine

ADV, adefovir

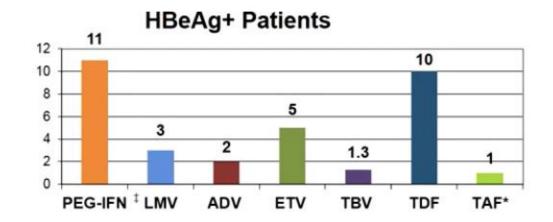
ETV, entecavir

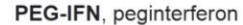
TBV, telbivudine

TDF, tenofovir

Response of Peg-IFN assessed after treatment

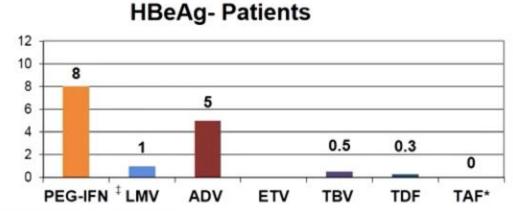
† = 6 months off Rx


‡ = 3 years off Rx


Response of nucleos/tide analogue assessed on treatment

HBsAg Loss After 1 to 5 Years of Treatment

LMV, lamivudine


ADV, adefovir

ETV, entecavir

TBV, telbivudine

TDF, tenofovir

HBsAg Loss (%)

Response of IFN assessed after treatment ‡ = 3 years off Rx

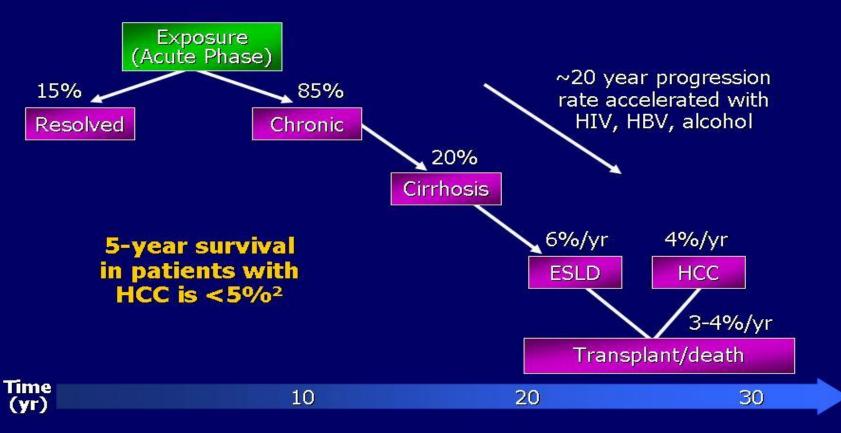
Response of nucleos/tide analogue assessed on treatment

Antiviral Treatment of the Patient with Chronic Hepatitis B

Scaglione SJ, Lok AS. Gastro. 2012; 142: 1360-1368.
Chan H, Lancet Gastrohep 2016; 1: 185, Buti M, Lancet
Gastrohep 2016; 1: 196

FUNDAMENTALS "LIVER DISEASE

When to Stop Nucleos/tide Analogues?


- Non-cirrhotic
 - HBeAg+: After confirmed HBeAg seroconversion and an additional 12 months of consolidation therapy
 - HBeAg-: After HBsAg loss
- Compensated cirrhosis
 - Never or after HBsAg loss
- Decompensated cirrhosis
 - Never

HCV infection

Natural History of Hepatitis C

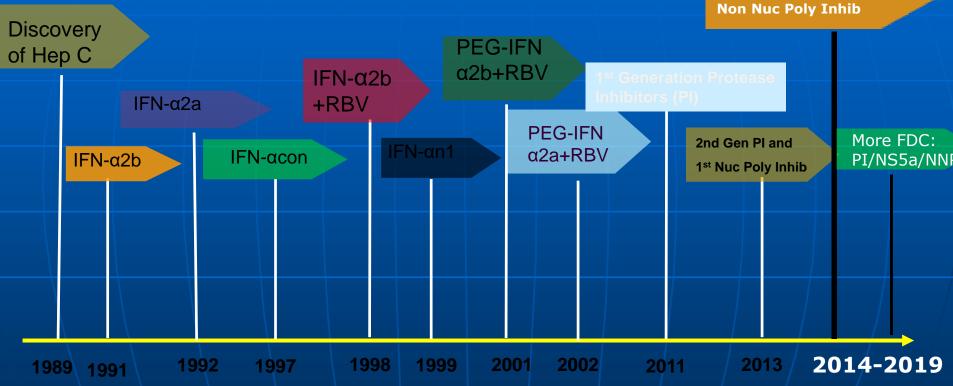
Natural History of HCV Infection

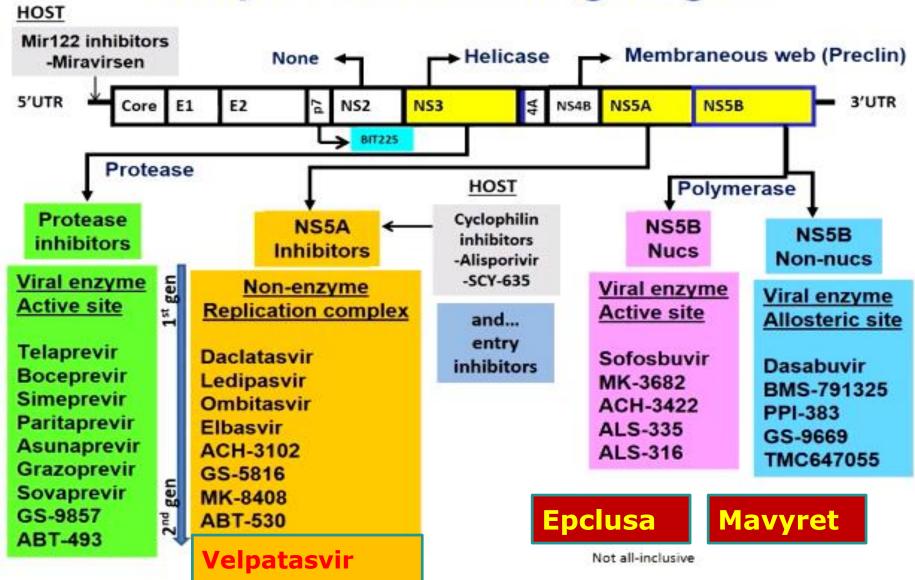
HCC = hepatocellular carcinoma

ESLD = end-stage liver disease

Di Bisceglie, A et al. Hepatology. 2000;31(4):1014-1018.

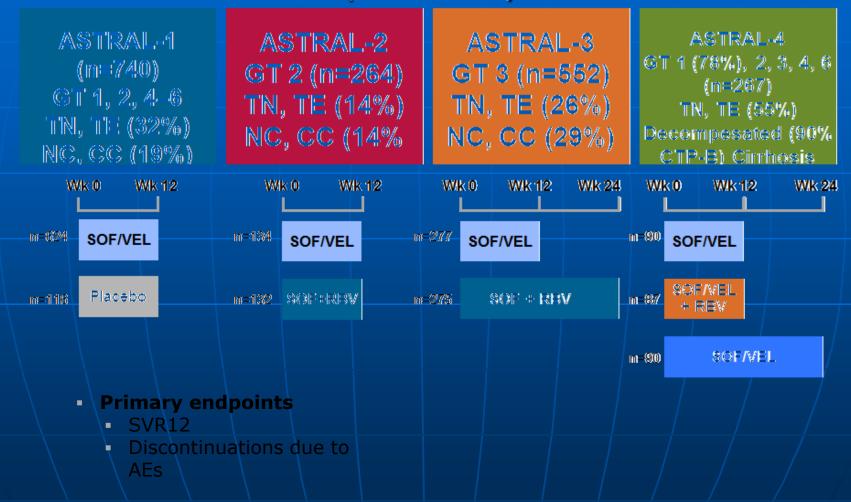
Who to treat


Recommendations for Testing, Managing, and Treating Hepatitis C

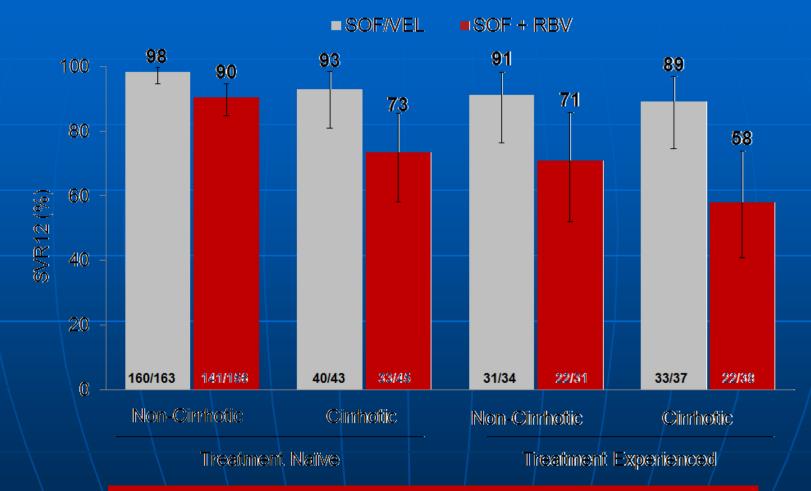

- Successful hepatitis C treatment results in sustained virologic response (SVR), which is tantamount to virologic cure, and, as such, is expected to benefit nearly all chronically infected persons.
- Antiviral treatment is recommended for all patients with chronic HCV infection, except those with limited life expectancy due to nonhepatic causes.
 (I-A)
- If resources limit the ability to treat all infected patients immediately as recommended, then it is most appropriate to treat those at greatest risk of disease complications before treating those with less advanced disease.
- Use of noninvasive testing or liver biopsy is recommended in order to assess the degree of hepatic fibrosis, and hence the urgency of immediate treatment. (I-A)

Evolution of Hepatitis C Therapy

Multiple Validated Drug Targets



Critical clinical data to guide HCV therapy decision making


- Genotype/ subtype
- HCV RNA levels
- Liver disease stage- cirrhosis or no cirrhosis
- Prior treatment experience
- Kidney disease—Zepatier
- organ transplant
- Issues with ribavirin use

Pangenotypic DAAs

SOFOSBUVIR/VELPATASVIR (EPCLUSA): The ASTRAL Phase 3 Randomized Trials (N=1302)

ASTRAL-3 SVR12 by Cirrhosis Status and Treatment History

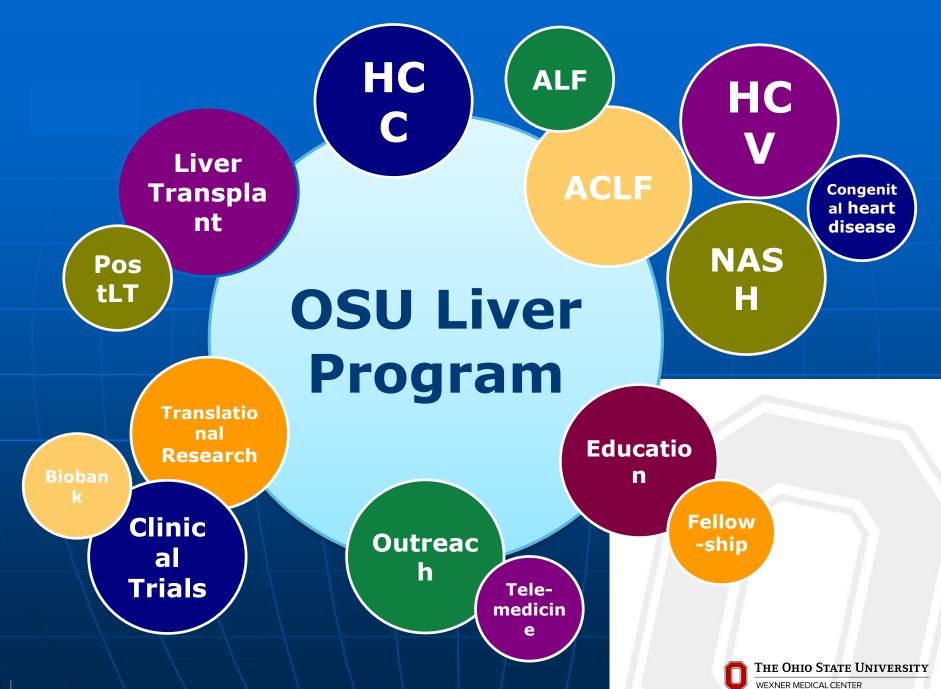
More Serious AEs (6% vs 2%) and D/C (3% vs 0%) due to AEs in SOF/RBV

Mangia, AASLD, 2015, 249. Foster GR, et al. New Engl J Med. 2015. DOI: 10.1056/NEJMoa1512612

Sustained Virologic Response

>90%

Sustained Virologic Response


- Hepatitis C PCR negative 3 months after stopping antiviral therapy
- Durable
 - 99% stay HCV negative for > 10 years
- Associated with Improved Outcomes
 - Leads to improved histology
 - Leads to clinical benefits
 - Decreased decompensation
 - Prevents de novo esophageal varices
 - Decreased hepatocellular carcinoma
 - Decreased mortality

Conclusions

- Acute hepatitis is a morbid and sometimes fatal condition
- Early diagnosis of severe form is important-NAC, anti-viral.
- There is an outbreak of HAV in Ohio; vaccination is warranted.
- HBV is self limiting in majority but can lead to ALF.

Conclusions

- Multiple Anti-virals are available for controlling chronic HBV infection.
- Acute HCV can progress to chronic phase in 60-70% of cases.
- Pangenotypic AVT for HCV is very effective >90% SVR has been reported.
- Cost of treatment and getting medication approval is the most challenging part.

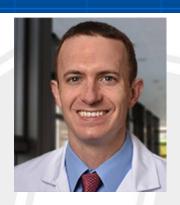
Hepatology MDs

James Hanje, MD
Director of Hepatology
Program Director,
Transplant Hepatology
Fellowship

Khalid Mumtaz, MBBS, MSc Director of Hepatology Research

Anthony
Michaels, MD
Medical Director of
Liver Transplantation

Lanla F. Conteh, MD, MPH Director of Hepatobiliary Tumor Program


Robert
Kirkpatrick, MD
Associate Director of
GI Fellowship

Na Li, MD, M

Douglas Levin, MD

Hepatology CNPs

Pamela Kibbe, CNP

Nicole O'Bleness Gray, CNP

Gail Davidson, CNP

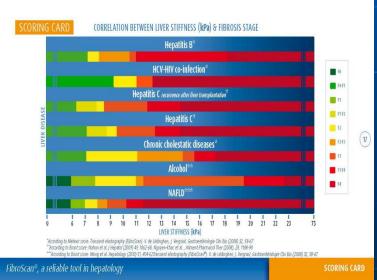
Erica Campbell-Brown, CNP

Sherry Ma,

Collaborative Clinical Efforts

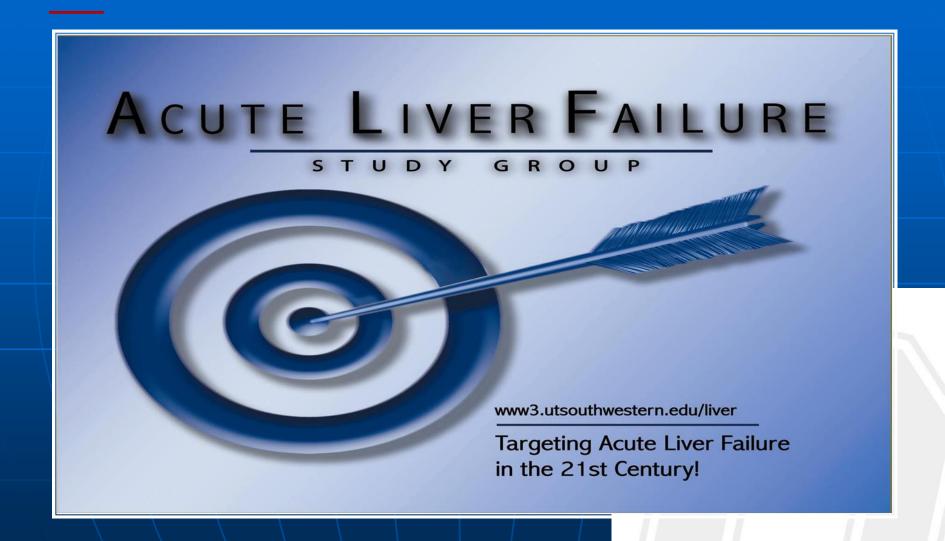
- Multi-disciplinary and sub-specialized clinics
 - Liver tumor clinic
 - HCV treatment
 - NASH and metabolic liver disease
 - Post-transplant care
 - Live Donor LT

New Tools and Treatment Options

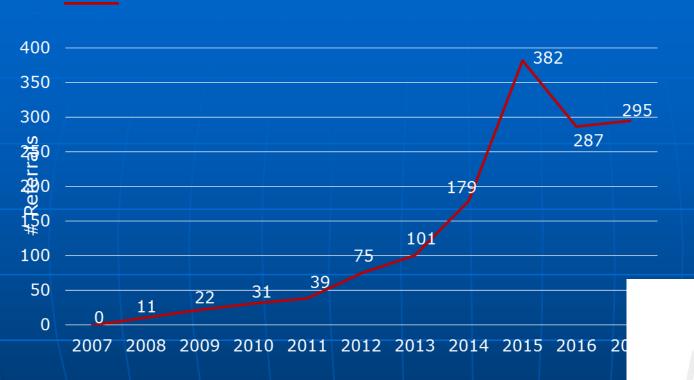

- Hepatocellular Carcinoma (HCC):
 - TACE
 - RFA
 - Y-90
 - SBRT
- Portal hypertensive bleeding:
 - Cyanoacrylate injection of gastric varices
 - Balloon-Occluded Retrograde Transvenous Obliteration (BRTO)

Transient Liver Elastography (Fibroscan)

- The most efficient approach to fibrosis assessment is to combine direct biomarkers and vibration-controlled transient liver elastography
 - A biopsy should be considered for any patient who has discordant results between the 2 modalities that would affect clinical decision making.

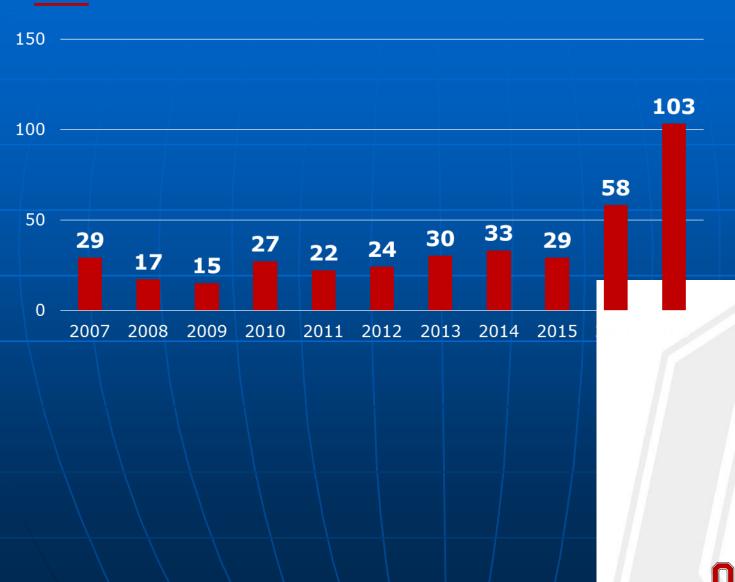


NIH Research Trials



Clinical Research Trials

- NASH cirrhosis
 - Tocotrienol
 - Cenicriviroc (AURORA)
 - Obetacholic acid (REVERSE)
- Hepatorenal Syndrome (CONFIRM)
 - Terlipressin
- Acute on chronic liver disease
 - Albumin infusion (PRECIOSA)
- PBC with decompensated cirrhosis
 - Obetacholic acid
- HCV
 - NS5A Inhibitor + Sofosbuvir failure
 - New PCR assay



Hepatology Referrals

Ohio State Liver Transplant Volume

Living Donor Liver Transplantation

Thanks