A Review on the Management of Acute Pancreatitis

Presented By: Frances Horenstein MD, Mohammed Mazumder MD Licking Memorial Health Systems

Objectives:

- To discuss the most recent guidelines published by the American College of Gastroenterolgy on acute pancreatitis.
- To discuss in detail changes and current treatment paradigms of acute pancreatitis.
- To create an avenue to discuss recent changes in evaluation, diagnosis and management in common conditions that may present as pancreatitis.

Question 1

- Contrast enhanced CT and or MRI is necessary in making the diagnosis of acute pancreatitis.
 - A. True
 - B. False

Acute Pancreatitis (AP)

- 2009: most common GI discharge diagnosis led to \$2.6B in costs
- Incidence: 4.9-73.4 per 100,000 worldwide
- National Hospital Discharge Survey: hospital admissions 40/100,000
- Case fatality has decreased, overall mortality unchanged

Diagnosis

- Established by the presence of 2 of the 3 following criteria:
 - abdominal pain: epigastric or left upper quadrant, constant with radiation to the back, intensity is severe
 - serum amylase and/or lipase greater than 3x the upper limit of normal
 - characteristic findings from abdominal imaging

2 Phases of AP

- Early (within 1 week)
 SIRS and/or organ failure
- Late (>1week)
 - local complications (peripancreatic fluid collections, pancreatic and peripancreatic necrosis (sterile or infected), pseudocysts, and walled off necrosis (sterile or infected)

Diagnosis: Abdominal Imaging

- CECT: >90% sensitivity and specificity for the diagnosis of AP
- Indicated-failure to improve after 48-72hrs
- CECT and MRI are comparable
- MRCP: advantage of detecting cholelithiasis down to 3mm and pancreatic duct disruption
- MRI: helpful in patient s with contrast allergy and renal insufficiency

Question 2

- All patients with suspected/confirmed AP should get an abdominal US.
 - A. True
 - B. False

Abdominal Imaging: US

- SHOULD BE PERFORMED IN ALL PATIENTS WITH AP (strong recommendation, low quality evidence)
- Advantage: quick
- Limitation: cannot detect subtle signs like small stones or sludge and diffuse inflammation can obscure findings.

Etiology

- Gallstones: 40-70%
- Alcohol: 25-35%
- Uncommon: medications, infections, hypercalcemia, hypertriglyceridemia, hyperparathyroidism

Alcohol-induced Pancreatitis

- discrete episodes of AP to chronic irreversible chronic changes
- history of over 5 years heavy alcohol consumption
- "heavy" >50g per day
- *clinically evident AP occurs in <5% of heavy drinkers

Idiopathic AP

- no etiology established after initial laboratory & imaging
- Possible etiologies: pancreas divisum, sphincter of Oddi dysfunction
- Genetic defects: cationic trypsinogen mutation, SPINK or CFTR mutations
- Pancreatic cancer

Severity of Disease

- Mild AP: absence of organ failure and/or pancreatic necrosis
- Moderately severe: transient organ failure or local or systemic complications ; absence of persistent organ failure
- Severe disease
 - presence of persistent organ failure
 - pancreatic necrosis

Table 3. Definitions of severity in acute pancreatitis: comparison of Atlanta and recent revision

Atlanta criteria (1993)	Atlanta Revision (2013)
Mild acute pancreatitis	Mild acute pancreatitis
Absence of organ failure	Absence of organ failure
Absence of local complications	Absence of local complications
Severe acute pancreatitis	Moderately severe acute pancreatitis
1. Local complications AND/OR	1. Local complications AND/OR
2. Organ failure	2. Transient organ failure (<48h)
GI bleeding (>500 cc/24 hr)	Severe acute pancreatitis
Shock – SBP \leq 90 mm Hg	Persistent organ failure >48 hª
PaO 2 ≤ 60 %	
Creatinine ≥2mg/dI	
GI, gastrointestinal; SBP, systolic blood pressure.	

^aPersistent organ failure is now defined by a Modified Marshal Score (6,8)

Table 4. Clinical findings associated with a severe course for initial risk assessment^a

Patient characteristics	Laboratory findings
Age > 55 years (53,57)	BUN >20 mg/dl (63)
Obesity (BMI $>$ 30 kg/m ²) (68)	Rising BUN (63)
Altered mental status (69)	HCT > 44% (62)
Comorbid disease (53)	
<i>The systemic inflammatory response syndrome (SIRS)</i> (6,53,54,70,71) Presence of >2 of the following criteria:	Rising HCI (62)
	Elevated creatinine (72)
– pulse >90 beats/min	Radiology findings
– respirations >20/min or $PaCO_2 > 32 \text{ mm Hg}$	Pleural effusions (73)
– temperature >38°C or <36°C	Dulmanany infiltrates (E2)
–WBC count >12,000 or <4,000 cells/mm ³ or >10% immature neutrophils (bands)	Pulmonary inflitrates (55)
	Multiple or extensive extrapancreatic collections (67)

Question 3

- What is the hallmark of AP management?
 - A. Early ERCP
 - B. CT with contrast or MRCP
 - C. Aggressive hydration
 - D. Early refeeding

Initial Management

- Early aggressive hydration
 - 250-500ml per hour of isotonic crystalloid solution
 - most beneficial during the first 12-24 hours
 - Lactated Ringer's solution
 - goal: decreasing BUN and reassessed periodically

Role of Antibiotics

- Given for extrapancraetic infection: cholangitis, catheter-acquired infections, bacteremia, UTI, pneumonia
- Routine use even in severe AP is not recommended
- Use in sterile necrosis is not recommended
- Infected necrosis: failure to improve after 7-10 days of hospitalization

Question 3

- NJ feeding is preferred over NG feeding in acute pancreatitis.
 - A. True
 - B. False

Nutrition in AP

- Mild: feedings can be started immediately

 start low fat is as safe as clear liquid diet
- Severe: enteral nutrition to prevent infectious complications
 - avoid parenteral nutrition
 - NG vs NJ have comparable efficacy

The role of ERCP

- ERCP is not needed in most patients with gallstone pancreatitis who lack laboratory or clinical evidence of ongoing biliary obstruction.
- MRCP or endoscopic ultrasound (EUS) rather than diagnostic ERCP if no Cholangitis/jaundice

The Role of ERCP

- Acute pancreatitis with concurrent cholangitis-ERCP within 24 hours
- Lab or clinical evidence of ongoing biliary obstruction
- Sphincterotomy if cholecystectomy can't be performed due to underlying co morbidities.
- Pancreatic divisum

Common bile duct stone on endoscopic retrograde cholangiopancreatography (ERCP)

Cholangiogram showing large (2 cm) common bile duct stone (arrow). Courtesy of Martin L. Freeman, MD.

Copyrights apply

The role of EUS

- In a patient older than 40 years, a pancreatic tumor should be considered as a possible cause of acute pancreatitis –if no etiology identified with initial work up.
- Benign or malignant pancreatic tumor blocking PD can cause pancreatitis

EUS image of pancreatic serous cystadenoma (microcystic variety)

Endoscopic ultrasound image revealing a microcystic lesion with a honeycomb appearance. *Courtesy of Kevin McGrath, MD, and Asif Khalid, MD.*

Intraductal papillary mucinous neoplasm

Images obtained during endoscopic retrograde cholangiopancreatography in a 61-year-old patient with steatorrhea, weight loss, and diabetes. The left panel shows an endoscopic image of the papilla, which has a gaping "fisheye" appearance and is exuding mucin. The pancreatogram shows a dilated pancreatic duct and side branches with intraluminal filling defects. The patient underwent a pancreaticoduodenectomy, which confirmed an intraductal papillary mucinous neoplasm.

Courtesy of Maurits Wiersema, MD.

Role of cholecystectomy

- In patients with mild AP(acute pancreatitis), found to have gallstones in the gallbladder, a cholecystectomy should be performed before discharge to prevent recurrence of AP
- 18% readmission within 90 days with recurrent biliary pancreatitis if cholecystectomy not done . Some were severe AP as per literature

Question 4

- Effective strategy/s to reduce the risk of post ERCP pancreatitis
 - A. Aggressive IV fluids
 - B. Pancreatic duct stent placement
 - C. Indomethacin pre or post procedure
 - D. All of the above

Post ERCP pancreatitis

- 5 10 % in general and 20 40 % in certain high-risk procedures
- Pancreatic duct stents and / or postprocedure rectal nonsteroidal anti-inflammatory drug (NSAID) suppositories should be utilized to lower the risk of severe post-ERCP pancreatitis in high-risk patients

Endoscopic Management of pancreatic necrosis

Axios stent

