Pediatric Pneumonia and Bronchiolitis Diagnosis and Treatment: An Evidence-Based Approach

Show me the EVIDENCE!

Presented By: John Lazar, MD Licking Memorial Health Systems

Disclosures: Nothing to Declare!

Today's Road Map

- Pneumonia topics
- Bronchiolitis topics
- Case Study
- Summary & Questions
- <u>After this talk you will</u>:

- Understand that most pediatric CAP is viral
- Know why narrow spectrum antibiotics are best AND know best amox CAP dosing
- Reserve labs/imaging only for potentially hospitalized CAP pt's
- Know that evidence supports minimal bronchiolitis tx (and what the tx's are)

Pneumonia- Epidemiology

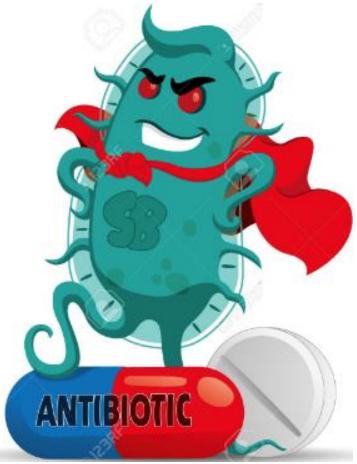
- US: affects 2.6% of children under 17
- PNA hospitalization decreases with age:
 - <2 y/o: 62 per 10,000
 - 10-17 y/o: 4 per 10,000
- PNA is #1 cause of pediatric hospitalizations: \$1 billion annually

Pneumonia- Definitions

- PNA- LRTI usually associated with fever, resp sx's, evidence of parenchymal involvement (exam or infiltrates)
- Community acquired pneumonia (CAP)- acute lower respiratory tract infection in previously healthy pt

Pneumonia- Side Note on Antibiotic Stewardship/Overuse

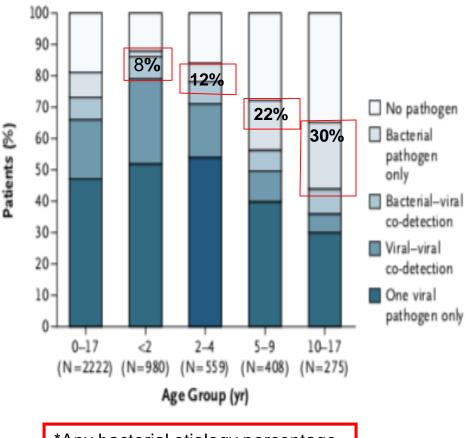
Increased abx resistance


- 2 million annual abx-resistant infections
- 23,000 resultant deaths
- 50% of pediatric abx are not needed or sub-optimally prescribed

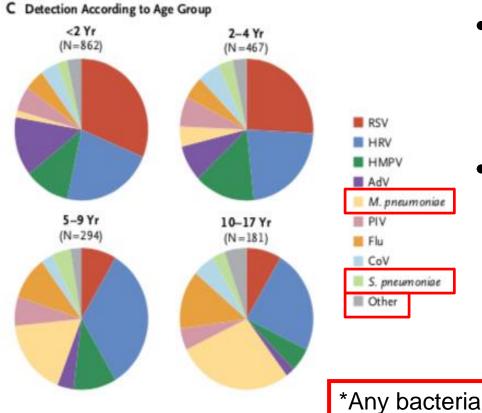
Increased c. difficile

Increased atopy/asthma

Broad spectrum abx in AOM, strep throat, sinusitis:


- not more effective
- increase risk of AE's
- lower QOL

Pneumonia- Etiologies


- CAP 3 main bacterial suspects: *S. pneumoniae, S. aureus, S. pyogenes*
- EPIC 2015 Study:
 - >2300 pts 0-17 admitted with PNA
 - Only 15% had bacteria (% increases with age; largely *mycoplasma*driven)

A Detection of Bacterial and Viral Pathogens

*Any bacterial etiology percentage

Pneumonia- Etiologies: EPIC Study Continued

- Mycoplasma only exceeds 5% in 5-9 y/o group
- *S. pneumo* and other group increase slightly but stay in 5-10% range

Pneumonia- Diagnosis

Combo of H&P, imaging, labs

<u>Exam</u>-

- Fever, cough, increased WOB, hypoxia, tachypnea
- Tachypnea is most sensitive; decreases w/ age
- Lower lobe: possible ab pain
- Younger pt's: nonspecific signs/symptoms
- Consolidation: crackles, fremitus ("ninety-nine"), egophany ("E" sound), bronchophony, dullness to percussion

<u>CXR</u>-

- Don't need for mild disease with consistent H&P
- Uses:
 - Severe illness/admitted pt's
 - Rule out other entities (foreign body, PTX, etc) when suspected
 - Inconclusive H&P
 - Treatment failure/complications
 - Febrile infant with leukocytosis
 - Recurrent PNA or suspected anatomic PNA set-up
- Returns to normal in 2 months in 90% of pts <u>US/CT</u>-
- US for empyema/effusion
- CT for abscess/fistula suspicion

Pneumonia- Diagnosis: Labs

Reserve for severe dz or hospitalization candidates

Bloodwork-

- <u>Blood culture</u>- if admitted, tx failure, complicated dz
- Inflammatory markers-
 - One piece of puzzle; not sole determinant
 - Procalcitonin-
 - <0.1 ng/ml: zero pt's with typical bacteria
 - <0.25 ng/ml: 96% NPV for typical bacteria
 - ESR > 35 mm/h PPV = 38%
 - CRP > 6.0 mg/dL PPV = 43%
 - ESR/CRP PPV increases when combined
 - CBC not useful to determine viral vs. bacterial
 - Aids in disease monitoring, esp complicated/severe cases

PCR's and viral studies-

- Viral PCR's- only if results will change mgmt.
- Upper-airway samples can help diagnose: mycoplasma pneumoniae, Chlamydophila pneumoniae, Bordetella pertussis, Bordatella parapertussis
- Mycoplasma PCR- more sensitive when done alone compared to viral panel array

Other specimen studies-

- Pleural fluid analysis- only if complicated dz
- Consider sputum sample in older, mod/severe hospitalized patients

Pneumonia- Diagnosis: Bacterial, Atypical, or Viral?- THIS IS CHALLENGING!

Hints at bacterial:

- Abrupt onset, possibly following URI sx's
- Ill appearance
- Complicated pneumonia
- Truly focal exam (note: viruses cause focal pneumonia too)
- Elevated inflammatory markers (esp if both CRP and procalcitonin)

Viral hints:

- Insidious onset
- Non ill appearance
- Coincident URI symptoms
- Diffuse (non-focal) auscultation
- Proven virus (e.g. respiratory infection panel)
- Wheezy, hypoxic kid more likely viral
- Diffuse x-ray pattern

Hints at atypical (c. pneumoniae or mycoplasma): See next slide

Pneumonia- Diagnosis: Hints at Atypical Bacteria

<u>Labs</u>-

• CRP, WBC, % PMN's lower in atypical vs. *S. pneumo* (although std deviations overlap)

<u>CXR</u>- no studies have shown differences bw typical and atypical PNA via CXR

<u>H&P</u>- Mycoplasma: URI and LRTI sx's; also hemolytic anemia, rash/SJS, polyarthritis, GI (pancreatitis, hepatitis), carditis

Clinical-

- Pt age: mycoplasma rates <5% in pt's < 5 y/o
- Milder, longer course (~3-5 days)
- Low-grade fever
- Wheezing
- Diffuse x-ray exam/findings
- Constitutional findings
- Mycoplasma can also cause effusion (usually small)
- Mycoplasma may start w sore throat & myalgia

	Infection due to			
Parameter	Streptococcus pneumoniae {n = 48}	Atypical bacteria (n = 46)	Mixed S. pneumoniae and atypical bacteria (n = 16)	Undiagnosed cases (n = 86)
WBC count, mean cells/µL ± SD	16,669 ± 8831 ^{a,b,c}	12,554 ± 5404	13,141 ± 4540	12,960 ± 5670
Neutrophils	69 ± 17 ^{a,b,c}	59 ± 18	63 ± 16	62 ± 16
Lymphocytes	22 ± 15	28 ± 17	25 ± 16	27 ± 17
Monocytes	7 ± 3	8 ± 3	7 ± 3	8 ± 3
Eosinophils	1 ± 2	1 ± 1	1 ± 2	1 ± 2
Basophils	0.3 ± 0.6	0.4 ± 0.7	0.3 ± 0.4	0.3 ± 0.6
CRP level, mean μ g/dL ± SD	$109 \pm 110^{0,0}$	59 ± 88	77 ± 79	69 ± 82
ESR, mean mm/h ± SD	57 ± 28	47 ± 27	52 ± 44	49 ± 39

NOTE. Data are mean % of WBCs ± SD, unless otherwise indicated. Unless indicated, differences were not significant. CRP, C reactive protein; ESR, erythrocyte sedimentation rate.

P<.05 compared with atypical bacterial infection.</p>

^b P<.05 compared with mixed S. pneumoniae-atypical bacterial infection.</p>

^c P<.05 compared with undiagnosed cases.</p>

Pneumonia- Diagnosis: Bacterial, Atypical, or Viral?

Clinical and radiographic clues to the etiology of pneumonia in children*

Etiology	Clinical features	Radiographic features
Bacteria (most commonly <i>Streptococcus pneumoniae</i>)	Children of all ages Abrupt onset Ill-appearance Chills Moderate to severe respiratory distress Focal auscultatory findings Localized chest pain WBC count >15,000/microL (if obtained) Elevated acute phase reactants (if obtained)	Alveolar infiltrates Segmental consolidation Lobar consolidation "Round" pneumonia Complications: Pleural effusion/empyema Lung abscess Necrotizing pneumonia Pneumatocele
Atypical bacterial (Mycoplasma pneumoniae, Chlamydia pneumoniae)	 Children of all ages (most common in children >5 years) Abrupt onset with constitutional findings (malaise, myalgia, headache, rash, conjunctivitis, photophobia, sore throat, headache) Gradually worsening nonproductive cough Wheezing Extrapulmonary manifestations or complications (eg, Stevens-Johnson syndrome, hemolytic anemia, hepatitis, etc) 	Interstitial infiltrates
Viral	Usually children <5 years Gradual onset Preceding upper airway symptoms Nontoxic appearing Diffuse, bilateral auscultatory findings Wheezing May have associated rash (eg, measles, varicella)	Interstitial infiltrates
Afebrile pneumonia of infancy (most commonly Chlamydia trachomatis)	Usually in infants 2 weeks to 4 months Insidious onset Rhinorrhea Staccato cough pattern Peripheral eosinophilia (if CBC obtained)	Hyperinflation with interstitial process

Pneumonia- When to Admit for CAP?

TABLE 1. Criteria to Consider Hospitalization for Pediatric Pneumonia

- Hypoxemia (oxygen saturations <90% to 92% at sea level)
- · Infants <3 to 6 months of age with suspected bacterial community-acquired pneumonia

Tachypnea:

- Infants <12 months of age: respiratory rate >70 breaths per min
- Children: respiratory rate >50 breaths per min
- · Respiratory distress: apnea, grunting, difficulty breathing, and poor feeding
- · Signs of dehydration or inability to maintain hydration or oral intake
- Capillary refill time >2 s
- · Infants and children with toxic appearance

 Suspected or confirmed to have infection with a virulent organism (community-acquired methicillin-resistant Staphylococcus aureus or group A Streptococcus)

· Underlying conditions/comorbidities that:

 May predispose patients to a more serious course (eg, cardiopulmonary disease, genetic syndromes, neurocognitive disorders, neuromuscular disorders)

May be worsened by pneumonia (eg, metabolic disorder)

· May adversely affect response to treatment (eg, immunocompromised host, sickle cell disease)

· Complications (eg, effusion and/or empyema)

- · Failure of outpatient therapy (48-72 h with no clinical response)
- · Caretaker unable to provide appropriate observation or to comply with prescribed home therapy

Indications for intensive care unit admission include:

- Severe respiratory distress or impending respiratory failure that requires:
- Intubation and mechanical ventilation
- Positive pressure ventilation
- Recurrent apnea or slow irregular respirations
- Cardiopulmonary monitoring due to cardiovascular compromise secondary to:
- Sustained tachycardia
- Inadequate blood pressure
- Requirement of pharmacological support for blood pressure or perfusion
- Altered mental status due to hypercarbia or hypoxemia
- Pulse oximetry measurement of <92% on fractional inspired oxygen concentration of >0.50
- Pediatric Early Warning Score >6

Reproduced with permission from Gereige RS, Laufer PM. Pneumonia. Pediatr Rev. 2013;(34):19. (5)

Pneumonia- Outpatient Mgmt

Tx is empiric

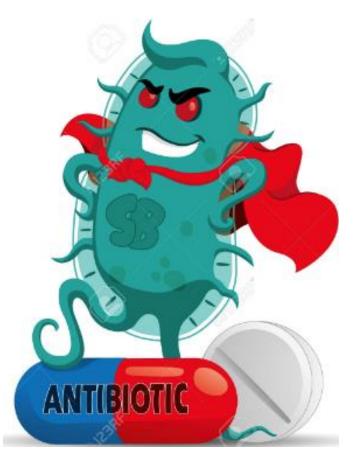
Abx not routinely recommended in preschool age

(unless strong bacterial suspicion)

Oral cephalosporins are inferior to amox

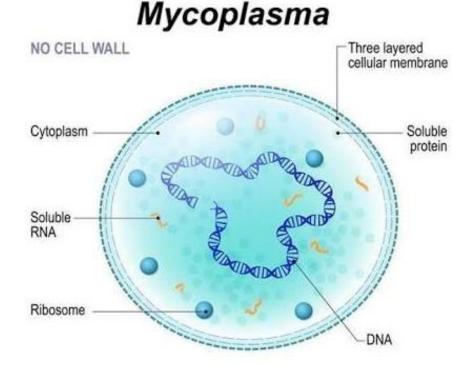
Beta-lactam allergy-

- Mild: amox w/ observation, PO cephalosporin (e.g. cefpodoxime, cefprozil, cefuroxime)
- Severe: levoflox, linezolid, macrolide (resistance often high)


Amox dosing: 33 mg/kg TID (MDD 4 g)

Duration- 5-7 days

Amox-clavulanate- adds HiB and *M. catarrhalis* coverage (not needed in fully immunized, normal child)


Mycoplasma- azithro for 5 days

Remember your local antibiogram

Pneumonia- Outpt Mgmt: Should I Test and Treat Mycoplasma?

- Azithro will not adequately treat most CAP bugs
- Testing- consider if unclear H&P; results are not immediate
- Treatment- when high suspicion based on H&P/testing

Pneumonia- Outpt Mgmt: Tx Failure

- Definition- clinical worsening despite 48 hours properly chosen/dosed abx
- Consider repeat CXR/hospitalization
- If hospitalized, expand abx if more virulent bugs (*S. aureus, S. pyogenes*)

Pneumonia- Inpt Mgmt Basics

1st line (generally)- ampicillin Broaden your microbial ddx-

- *S. pneumo* still most common
- Flu with superimposed bacterial PNA: suspect *S. aureus*
- Rapidly progressive or sepsis/shock: consider S. aureus or S. pyogenes
- Likely do not need to cover for HiB or *M*. *catarrhalis* (unless under-immunized)
- Complicated dz: *consider* ceftriaxone first line plus staph coverage. Amp OK for simple effusion.

PCN allergy- ceftriaxone

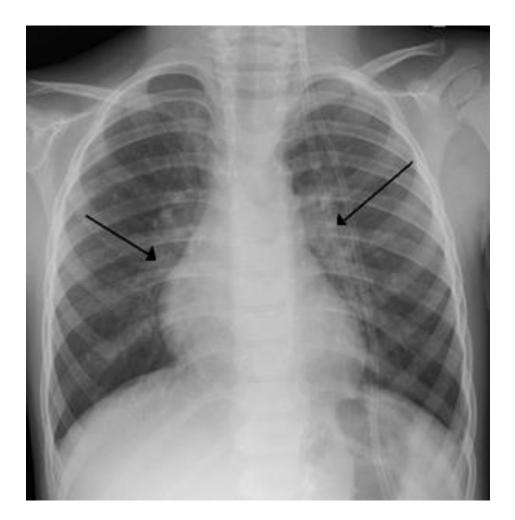
• Ceftriaxone other cases: under-immunized, high local PCN-R strains, severe/complicated disease

Beta-lactam allergy- levofloxacin

- <u>*Confirmed* atypical</u>- *azithro
- <u>MRSA coverage</u>- Vanc. Add clinda for toxin-mediated (complicated) process.
- <u>Duration</u>-
 - Uncomplicated: 7-10d
 - Complicated: longer
- <u>Steroids</u>- Consider in asthma pt when signs of reversible obstruction
- <u>Chest physiotherapy</u>- no benefits in outcomes or LOS
- <u>No improvement or worsening 48-72</u> <u>hours of appropriate abx</u>- assess for other cause, consider resistance, look for complications

*no change in outcomes when azithro used

Pneumonia- Inpt Mgmt: Complications


- Will save most of this for another talk!
- Complicated CAP- effusion, empyema, abscess, fistula, necrotizing PNA.
- Few pointers-
 - Small uncomplicated effusion <10 mm on lateral CXR or <1/4 opacification of hemithorax: can still tx empirically only w amp
 - Broaden abx coverage beyond 3 main suspects: *HiB*, *mycoplasma*, *Legionella/Aspergillus* (necrotizing), anaerobes/*Klebsiesla* (abscess)

Pneumonia- Summary

- Reserve labs/imaging for potentially hospitalized pt
- Bacteria only involved in 15% of hospitalized PNA pt's; increases with age
- <u>Hints at etiology</u>-
 - Age-
 - mycoplasma only 5% in <5 y/o; increases substantially age 5
 - Bacterial is 8-12% of cases age 0-4
 - Signs & Symptoms-
 - Hints at viral/atypical-
 - Preceding/coincident URI/constitutional symptoms
 - Wheezing
 - Diffuse exam
 - Mild illness/appearance
- <u>Treatment</u>-
 - Abx not indicated in preschool age (unless strong evidence for bacteria)
 - Outpt: amox 33 mg/kg TID (MDD 4 g) for 5-7 days
 - Inpatient- amp first line. Broaden your ddx/pathogens. Consider azithro only for proven mycoplasma

Bronchiolitis

Bronchiolitis- Epidemiology

- 90% of kids infected with RSV in first 2y;
 40% of these will have LRTI
- Most common cause of infant hospitalization: 100,000 hospitalizations annually in US = \$1.73 billion
- Preterm infants have higher hospitalization rates

Bronchiolitis- Definition, Pathophysiology, Clinical

- Common LRTI in infants, characterized by acute inflammation, edema, epithelial necrosis, increased mucus production in small airways (bronchioles)
- Almost always virally-mediated: RSV>> rhinovirus > flu > hMPV > paraflu/others
- Usually URI prodrome followed by respiratory distress (retractions, grunting, tachypnea, nasal flaring), wheezing, hypoxia, extrapulmonary signs/symptoms (AMS, decreased PO)

Bronchiolitis- Mgmt

- Assess severity and risk factors for severe dz
 - Severe dz RF's: age < 12 w/o, prematurity, immunodeficiency, underlying cardio-pulm dz
- Diagnose clinically; labs/imaging not routinely recommended
 - Viral testing for infants on palivizumab to assess breakthrough RSV
 - *Can help when dx is in question*
 - CXR- often abnormal, but clinical significance unclear
 - Again, may assist if diagnosis is in question
 - LRTI kids with CXR were more likely treated with abx without difference in clinical outcome
- Pulse ox- unclear significance of hypoxia (<90%) on outcomes or borderline low (90-95%) on progression or need for follow-up

Bronchiolitis- What is Tachypnea Anyways?

WHO criteria:

- 0-2 months: > 60
- 2-12 months: > 50
- 1-5 years: > 40
- > 5 years: > 20

Bronchiolitis- Treatment

- Repositioning- Yes
- Albuterol- Not recommended
 - May improve symptoms scores
 - No change in LOS, disease resolution, hospitalization rate
 - May take into account h/o wheezing or atopy
- Hypertonic (3%) saline aerosol- Not in the ED, OK when admitted
- Steroids- Universally contraindicated
- Chest physiotherapy- No
- Suction- Nasal (non-invasive) probably OK. Deep suction may have negative effect
- Antibiotics- no, unless strong suspicion for bacterial infection

Bronchiolitis- Treatment (continued)

- Oxygen-
 - Only for persistent sats < 90%</p>
 - Pulse oximetry is optional
 - High-flow nasal cannula- early data suggest modest improvement

Bronchiolitis Treatment Summary: Always Sometimes, *Never

Reposition

Oxygen

Hypersaline

Deep suction

Physio-tx

Steroids

Albuterol*

Antibiotics*

Bronchiolitis- Summary

- Clinical diagnosis; labs/imaging only if strong suspicion for something else
 - CXR abnormal in ~25% of pt's without difference in etiology or outcome
- Tx:
 - No routine abx, no steroids ever, no physiotherapy
 - Albuterol: not recommended, but can take into account atopic history
 - Supportive: positioning, suction
 - 3% hypersaline aerosol when admitted
 - O2 only if pulse ox < 90%

Case Study-Ariel

- HPI: 3 y/o healthy female presents with 1 day h/o respiratory distress after 3-4 days rhinorrhea, congestion, sore throat, cough.
- Came from UC: pulse ox 88%, CXR obtained
- Vitals: T 100.9, RR 36, BP 96/60, P 120, P.O. 92-95%
- Exam: Non-toxic, grumpy, + clear rhinorrhea, b/l lateral cervical nodes, mild oropharyngeal erythema, faint diffuse wheezing, no increased WOB.

Case Study (continued)

• CXR- bilateral lower lobe opacity (infiltrate vs. atelectasis)

Case Study (continued)- Admit or Not?

- Any admission criteria?
 - No!

TABLE 1. Criteria to Consider Hospitalization for Pediatric Pneumonia

- Hypoxemia (oxygen saturations <90% to 92% at sea level)
- Infants <3 to 6 months of age with suspected bacterial community-acquired pneumonia
- Tachypnea:

° Infants <12 months of age: respiratory rate >70 breaths per min

- Children: respiratory rate >50 breaths per min
- · Respiratory distress: apnea, grunting, difficulty breathing, and poor feeding
- · Signs of dehydration or inability to maintain hydration or oral intake
- Capillary refill time >2 s
- · Infants and children with toxic appearance
- Suspected or confirmed to have infection with a virulent organism (community-acquired methicillin-resistant Staphylococcus aureus or group A Streptococcus)
- · Underlying conditions/comorbidities that:

 May predispose patients to a more serious course (eg, cardiopulmonary disease, genetic syndromes, neurocognitive disorders, neuromuscular disorders)

· May be worsened by pneumonia (eg, metabolic disorder)

· May adversely affect response to treatment (eg, immunocompromised host, sickle cell disease)

- · Complications (eg, effusion and/or empyema)
- Failure of outpatient therapy (48–72 h with no clinical response)
- · Caretaker unable to provide appropriate observation or to comply with prescribed home therapy

Indications for intensive care unit admission include:

Severe respiratory distress or impending respiratory failure that requires:

Intubation and mechanical ventilation

Positive pressure ventilation

- · Recurrent apnea or slow irregular respirations
- · Cardiopulmonary monitoring due to cardiovascular compromise secondary to:

Sustained tachycardia

Inadequate blood pressure

Requirement of pharmacological support for blood pressure or perfusion

Altered mental status due to hypercarbia or hypoxemia

Pulse oximetry measurement of <92% on fractional inspired oxygen concentration of >0.50

Pediatric Early Warning Score >6

Reproduced with permission from Gereige RS, Laufer PM. Pneumonia. Pediatr Rev. 2013;(34):19. (5)

Case Study (continued)- Workup?

- Blood work?
 - No since not sick enough for admission
- Viral testing?
 - No since viral identification not going to change management
- Mycoplasma testing?
 - Probably not based on pt's age and classic viral findings/symptoms
- Was it wrong to get the CXR?
 - Probably OK since hypoxic at initial presentation

Case Study (continued)- Treatment

- Consider observation period in ED for hypoxia redevelopment.
- Could consider bronchodilator if family h/o atopy
- Discharge with instructions for supportive care.

4 Points You MUST Remember!

- 1. Most pediatric CAP is viral, esp in the young
- 2. Narrow abx are best (superbugs, efficacy) for routine CAP
 - Amox CAP dosing: 33 mg/kg TID (MDD 4 g)
 - Evidence for adding azithro is *tenuous*
- 3. Reserve labs/imaging for potentially hospitalized patients
- 4. Bronchiolitis tx is minimal:
 - Yes: reposition, O2 (<90%)
 - Maybe: O2 (<90%)
 - Probably not: Deep suction, hypersaline, abx, albuterol
 - NO: steroids, chest physiotherapy

With your help, we can:

- Keep our kids safe (duh!)
- Fight the good fight against abx resistance
- Reduce medical costs
- Reduce radiation exposure and other overdiagnosis

Works Cited

- Bradley JS, et. al. The Management of Community-Acquired Pneumonia in Infants and Children Older Than 3 Months of Age: Clinical Practice Guidelines by the Pediatric Infectious Diseases Society and the Infectious Diseases Society of America. Clin Infect Dis. 2011 Oct;53(7):225-76
- <u>https://www.cdc.gov/antibiotic-use/week/overview.html</u>
- Esposito S, et al. Characteristics of *Streptococcus pneumoniae* and Atypical Bacterial Infections in Children 2–5 Years of Age with Community-Acquired Pneumonia. *Clinical Infectious Diseases*, Volume 35, Issue 11, 1 December 2002, Pages 1345–1352
- Franklin D et. al. A Randomized Trial of High-Flow Oxygen Therapy in Infants with Bronchiolitis. N Engl J Med 2018;378:1121-31.
- Gerber J, et al. Association of Broad- vs Narrow-Spectrum Antibiotics With Treatment Failure, Adverse Events, and Quality of Life in hildren With Acute Respiratory Tract Infections. JAMA. 2017; 318(23):2325-2336.
- Gereige R, Marcelo P. Pneumonia. Pediatrics in Review. March 2018.
- Jain S, et al. Community-Acquired Pneumonia Requiring Hospitalization among U.S. Children. N Engl J Med 2015; 372:835-845. DOI: 10.1056/NEJMoa1405870.
- Messinger A, et al. Management of Pediatric Community-acquired Bacterial Pneumonia. Pediatrics in Review. October 2017.
- Risnes K, et. Al. Antiobiotic Exposure by 6 Months and Asthma and Allergy at 6 Years: Findings in a Cohort of 1,401 US Children. <u>Am J Epidemiol</u>. 2011 Feb 1; 173(3): 310–318.
- Stockmann, et al. Procalcitonin Accurately Identifies Hospitalized Children With Low Risk of Bacterial Community-Acquired Pneumonia. J Pediatric Infect Dis Soc. 2018 Feb 19;7(1):46-53. doi: 10.1093/jpids/piw091.
- Uptodate. Community-acquired pneumonia in children: Outpatient Treatment.
- Williams DJ, et al. Effectiveness of Beta-Lactam Monotherapy vs Macrolide Combination Therapy for Children Hospitalized With Penumonia. JAMA Pediatr. 2017 Dec 1; 171(12): 1184-1191.